LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cryoprotective effect of resveratrol on DNA damage and crucial human sperm messenger RNAs, possibly through 5′ AMP-activated protein kinase activation

Photo from wikipedia

This work aimed at investigating the effect of resveratrol on (1) DNA integrity and (2) fertilizing capacity of sperm by quantifying the presence of key paternal transcripts considered as markers… Click to show full abstract

This work aimed at investigating the effect of resveratrol on (1) DNA integrity and (2) fertilizing capacity of sperm by quantifying the presence of key paternal transcripts considered as markers for male fertility (protamine 1 [PRM1] and protamine 2 [PRM2]) and pregnancy success (adducin 1 alpha [ADD1]) in cryopreserved human spermatozoa through modulation of AMP-activated protein kinase (AMPK). The study populations was drawn from 22 normozoospermic healthy volunteers which were incubated with or without AMPK activator (resveratrol [RSV], 15 µM) or inhibitor (Compound C [CC], 30 µM) for 1 h and were then cryopreserved. Untreated frozen–thawed spermatozoa served as controls. The RSV-induced AMPK activation decreased the level of DNA fragmentation in comparison with the control (21.18 ± 0.92 vs. 22.50 ± 0.40; p < 0.01). The relative mRNA expression levels of protamines (1 and 2) and ADD1 in RSV pretreated frozen–thawed human spermatozoa were also improved significantly compared to the control (p < 0.05). Conversely, the inhibitory effect of CC on AMPK activity deteriorated the deleterious effects of cryopreservation on these parameters (p < 0.01). In conclusion, these results demonstrated the cryoprotective effect of the RSV-induced increase in AMPK activity on DNA integrity and key paternal transcripts of cryopreserved human spermatozoa. These findings are of great importance for improving the available cryopreservation protocols in terms of the number of lesions that produced over key genes and the dramatic effects on sperm DNA fragmentation.

Keywords: dna; effect resveratrol; resveratrol dna; effect; amp activated

Journal Title: Cell and Tissue Banking
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.