LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Selective Oxidation of Glycerol to Glyceraldehyde with H2O2 Catalyzed by CuNiAl Hydrotalcites Supported BiOCl in Neutral Media

Photo from wikipedia

AbstractCuNiAl hydrotalcites supported BiOCl were prepared by one-step synthesis for the selective oxidation of glycerol to glyceraldehyde with H2O2 as oxidant. The prepared catalysts were found to be efficient due… Click to show full abstract

AbstractCuNiAl hydrotalcites supported BiOCl were prepared by one-step synthesis for the selective oxidation of glycerol to glyceraldehyde with H2O2 as oxidant. The prepared catalysts were found to be efficient due to the synergetic catalysis of surface oxygen vacancies, active Cu2+ ions in the HT-lattice and abundant surface –OH groups of catalysts. The optimal glycerol conversion could reach 75.4% with 82.4% of the selectivity to glyceraldehyde. Moreover, the catalyst could be reused at least 6 times, and a possible reaction mechanism was also proposed.Graphical AbstractInexpensive and environmentally friendly BiOCl/CuNiAl-HTs were synthesized by one-step for the highly selective oxidation of glycerol to glyceraldehyde. The glycerol conversion could reach 75.4% with 82.4% selectivity to GLAD. Such a highly efficient catalytic performance could be attributed to the synergistic effect of oxygen vacancies and the coordination of glycerol on Bi3+ in the supported BiOCl catalyst.

Keywords: glyceraldehyde; oxidation glycerol; selective oxidation; glycerol; supported biocl; glycerol glyceraldehyde

Journal Title: Catalysis Letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.