LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparative Study on Removal of NOx and Soot with A-site Substituted La2NiO4 Perovskite-like by Different Valence Cation

Photo from wikipedia

La1.8M0.2NiO4 (M = Na+, Sr2+, Ce3+) perovskite-like catalysts were prepared by citric acid complexation method. XRD, BET, FT-IR, SEM, XPS, H2-TPR, O2-TPD, MS-Soot-TPR, MS-NO-TPD and catalytic activity measurements were carried out to… Click to show full abstract

La1.8M0.2NiO4 (M = Na+, Sr2+, Ce3+) perovskite-like catalysts were prepared by citric acid complexation method. XRD, BET, FT-IR, SEM, XPS, H2-TPR, O2-TPD, MS-Soot-TPR, MS-NO-TPD and catalytic activity measurements were carried out to investigate the effect of A-site substitution on structure and catalytic performance for simultaneous removal soot and NOx. The characterization results show that La1.8M0.2NiO4 catalyst has high concentration of oxygen vacancies, more surface active oxygen, more trivalent nickel ions and better reducibility, which determines its better catalytic performance. The introduction of low valence cations at the A site significantly reduces the characteristic combustion temperature of soot and effectively promotes the reduction of NOx by soot. La1.8Sr0.2NiO4 catalyst exhibited the best soot removal performance with Ti 331 °C and Tm 473 °C, while La1.8Na0.2NiO4 catalyst showed the highest NOx conversion of 90%. Based on in situ DRIFTS and other characterization results, a possible mechanism for simultaneous removal of NOx and soot was proposed.Graphical Abstract

Keywords: perovskite like; removal; site; removal nox; soot; nox soot

Journal Title: Catalysis Letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.