Abstract A novel nanocatalyst design using nanomaterials through active-zone crystallisation was proposed. The hydrothermal crystallisation of amorphous dendritic fibrous nano-titanium dioxide with Ni (DFNT/Ni) sites was determined to be the… Click to show full abstract
Abstract A novel nanocatalyst design using nanomaterials through active-zone crystallisation was proposed. The hydrothermal crystallisation of amorphous dendritic fibrous nano-titanium dioxide with Ni (DFNT/Ni) sites was determined to be the main step in producing extremely active dendritic DFNT/Ni zones, which in turn dramatically enhanced their catalytic activities. DFNT/Ni was then combined with polyvinyl alcohol (PVA) by using a traditional individual-nozzle electrospinning method, and the resulting material was named PVA-DFNT/Ni. This method was utilised to produce 3-aryl-2-oxazolidinones from ethylene oxide, CO 2 , and anilines. The prepared catalytic apparatus was eco-friendly and had the advantages of high catalytic activity, ability to improve the reaction mixture, and reusability without a considerable decrease in efficiency. It is extracted in the straight and adoptive chemical fixation of flue-gas CO 2 obtained from industrial emissions, thereby achieving high degrees of CO 2 absorption and conversion. Graphic Abstract
               
Click one of the above tabs to view related content.