LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Catalytic Transfer Hydrogenation of Ethyl Levulinate to γ-Valerolactone Over Ni Supported on Equilibrium Fluid-Catalytic-Cracking Catalysts

Photo from wikipedia

Nickel supported on equilibrium fluid-catalytic-cracking catalysts (Ni/E-cats) were prepared by a simple grinding-pyrolysis method and employed for the transfer hydrogenation of ethyl levulinate (EL) to γ-valerolactone (GVL). 96.2% selectivity of… Click to show full abstract

Nickel supported on equilibrium fluid-catalytic-cracking catalysts (Ni/E-cats) were prepared by a simple grinding-pyrolysis method and employed for the transfer hydrogenation of ethyl levulinate (EL) to γ-valerolactone (GVL). 96.2% selectivity of GVL and 90.3% conversion of EL were obtained at 180 °C for 6 h over 30-Ni/E-cat. Through XRD, N 2 adsorption–desorption, NH 3 -TPD and SEM analysis, the high activity of the 30-Ni/E-cat catalyst was attributed to its dispersed Ni metal active centers and available acidic sites. Catalytic probe test revealed that metal and acid sites of Ni/E-cat played a synergistic catalytic role in the synthesis of GVL in 2-propanol, where Ni metal sites contribute to the hydrogenation of ketone group in EL, and acid sites of E-cat promoted the lactonization of intermediate ethyl- or isopropyl 4-hydroxyvalerate. Two reaction pathways and synergistic mechanism were proposed in this catalytic system. Moreover, Ni/E-cat catalyst exhibited good stability up to four cycles without obvious loss of catalytic activity. Graphic Abstract

Keywords: catalytic cracking; hydrogenation; fluid catalytic; cracking catalysts; supported equilibrium; equilibrium fluid

Journal Title: Catalysis Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.