LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Catalytic Removal of Benzene at Mild Temperature over Manganese Oxide Catalysts

Photo from wikipedia

Series of MnOx catalysts were synthesized through oxalate route and calcined at facile temperatures. Characterizations through XRD, N2-adsorption/desorption, HRTEM, C6H6-TPD, O2-TPD, XPS, and H2-TPR revealed that MnOx calcined at 250 °C… Click to show full abstract

Series of MnOx catalysts were synthesized through oxalate route and calcined at facile temperatures. Characterizations through XRD, N2-adsorption/desorption, HRTEM, C6H6-TPD, O2-TPD, XPS, and H2-TPR revealed that MnOx calcined at 250 °C (N250) with a main crystal phase of Mn2O3 showed micro-mesopores and largest specific surface area, and therefore had a high adsorption capacity of C6H6. N250 also presented better oxygen mobility, rich surface adsorbed oxygen species (Oads), and proper ratio of surface Mn4+/Mn3+. The starting temperature of H2-TPR of N250 was the lowest among the obtained MnOx samples. As a result, N250 exhibited the lowest T90 value of 191 °C in C6H6 thermal catalytic oxidation (WHSV 60,000 mL gcat.−1 h−1, initial C6H6 concentration 190 ppm) among all the catalysts, and this T90 value is lower than those reported in many research. At last, a potential reaction pathway was proposed according to the results of in-situ FTIR measurement.

Keywords: temperature; benzene mild; mild temperature; c6h6; removal benzene; catalytic removal

Journal Title: Catalysis Surveys from Asia
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.