LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Drp1-associated mitochondrial dysfunction and mitochondrial autophagy: a novel mechanism in triptolide-induced hepatotoxicity

Photo from wikipedia

AbstractTriptolide being an active ingredient of Chinese herbal plant Tripterygium wilfordii Hook f. has severe hepatotoxicity. Previous studies from our lab reported triptolide-induced mitochondrial toxicity in hepatocytes. However, biomolecular mechanisms… Click to show full abstract

AbstractTriptolide being an active ingredient of Chinese herbal plant Tripterygium wilfordii Hook f. has severe hepatotoxicity. Previous studies from our lab reported triptolide-induced mitochondrial toxicity in hepatocytes. However, biomolecular mechanisms involved in triptolide-induced mitochondrial dysfunction are not yet entirely clear. We explored the connection between mitochondrial fragmentation and mitophagy in triptolide-induced hepatotoxicity. Triptolide caused an increase in ROS production, a decrease in mitochondrial depolarization, a diminution of ATP generation, a decline in mitochondrial DNA copy number, mitochondrial fragmentation, and disturbance in mitochondrial dynamics in a concentration-dependent manner in L02 cells. Disturbance in mitochondrial dynamics was due to an increased expression of Drp1 fission protein in vitro and in vivo. L02 cells exhibited an increase in the colocalization of lysosomes with mitochondria and autophagosomes with mitochondria in triptolide treated group as compared to control group which was inhibited by Mdivi-1. Transmission electron micrographs of rat liver tissues treated with triptolide (400 μg/kg) revealed activation of mitophagy which was prevented by Mdivi-1 co-treatment. Taken together, our results showed that mitochondrial fission-associated mitophagy is a novel mechanism involved in triptolide-induced hepatotoxicity. For the alleviation of triptolide-induced hepatotoxicity, mitochondrial fission and mitochondrial autophagy signaling pathway can be targeted as a new therapeutic strategy. Graphical abstractᅟ

Keywords: induced hepatotoxicity; novel mechanism; triptolide induced; hepatotoxicity; mitochondrial dysfunction

Journal Title: Cell Biology and Toxicology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.