LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular dynamics simulation of cellulose-coated oil-in-water emulsions

Photo from wikipedia

The behaviors of cellulose chains and cellulose mini-crystal in oil-in-water emulsions were studied by molecular dynamics simulations to investigate the coating states and the structural features of cellulose in these… Click to show full abstract

The behaviors of cellulose chains and cellulose mini-crystal in oil-in-water emulsions were studied by molecular dynamics simulations to investigate the coating states and the structural features of cellulose in these emulsions. In oil-in-water emulsion, dispersed cellulose chains gradually assemble during the progress of the simulation, eventually surrounding the octane droplet. In case of a cellulose mini-crystal, the cellulose chain at the corner of the crystal first contacts with the octane droplet through its hydrophobic surface. The other cellulose chains along the crystal plane then gradually move toward the octane molecules. In both emulsions, the cellulose was found to interact with both water and octane surfaces with specific conformations that allow the CH groups of the glucose rings to contact with octane molecules, while the OH groups of these rings contact with water molecules to form hydrogen bonds. The cellulose chains on the octane droplet also contact with each other through lateral hydrogen bonding between chains. These interactions stabilize the emulsion formed by cellulose molecules as surfactants.

Keywords: oil water; molecular dynamics; water; water emulsions; cellulose chains

Journal Title: Cellulose
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.