LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A new bio-material with 3D lightweight network for energy and advanced applications

Photo from archive.org

A novel approach to modifying native cellulosic fibers by phosphorylation, glycerol grafting and further cross-linking by citric acid had been successfully investigated. The conductivity of the resulting cellulose-based material was… Click to show full abstract

A novel approach to modifying native cellulosic fibers by phosphorylation, glycerol grafting and further cross-linking by citric acid had been successfully investigated. The conductivity of the resulting cellulose-based material was measured to be 3 × 10−3 S cm−1, approximately 105 times as large as that in the initial fibers, while the volumetric mass density was 0.40 ± 0.03 g cm−3, similar with wood and wood products. These special properties and the capability to assemble these modified fibers into a paper sheet-like structure without altering the fiber morphology would boost the application of this new bio-based material, including its potential use as a conductive polymer for energy devices.

Keywords: new bio; lightweight network; energy; bio material; material; material lightweight

Journal Title: Cellulose
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.