LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of the nano-fibrillation of bamboo pulp on the thermal, structural, mechanical and physical properties of nanocomposites based on starch/poly(vinyl alcohol) blend

Photo from wikipedia

The current work aimed to evaluate the influence of adding bamboo cellulose nanofibrils on the performance of poly(vinyl alcohol)—PVA and modified cassava starch—FMM blend nanocomposites. Nanofibrils were produced after 5… Click to show full abstract

The current work aimed to evaluate the influence of adding bamboo cellulose nanofibrils on the performance of poly(vinyl alcohol)—PVA and modified cassava starch—FMM blend nanocomposites. Nanofibrils were produced after 5 and 30 passes through the mechanical defibrillator. Blends formed from PVA and FMM in an 80/20 ratio were used for casting preparation of the nanocomposites reinforced with 6.5% of nanofibrils. Atomic force microscopy showed the deconstruction of the fiber wall with release of the cellulose nanofibrils. A higher degree of nano-fibrillation occurred after 30 passes. The interaction between the polymers and the reinforcement after 30 passes was verified by Fourier transform infrared spectroscopy and scanning electronic microscopy. The higher nano-fibrillation promoted higher homogeneity, cohesion and more compact structure, thus promoting the formation of larger well-defined crystals, which acted as nucleating agents in the matrix, as demonstrated by differential scanning calorimetry and X-ray diffractrometry. It led to improvements of the physical, thermal and mechanical properties of the nanocomposites, conferring them great potential for applications in the plastic film industries.

Keywords: microscopy; properties nanocomposites; nano fibrillation; vinyl alcohol; poly vinyl

Journal Title: Cellulose
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.