LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Statistical modelling and optimization of alkaline peroxide oxidation pretreatment process on rice husk cellulosic biomass to enhance enzymatic convertibility and fermentation to ethanol

Photo by milkbox from unsplash

The complex and ordered arrangements of the lignocellulosic materials make them recalcitrant for their conversions to ethanol. Pretreatment is a crucial step in overcoming these hindrances. In this study, a… Click to show full abstract

The complex and ordered arrangements of the lignocellulosic materials make them recalcitrant for their conversions to ethanol. Pretreatment is a crucial step in overcoming these hindrances. In this study, a 23-full factorial design of experiments optimization technique was applied on the alkaline peroxide oxidation pretreatments of rice husks biomass. The low–high levels of the influencing variables on pretreatments were; temperature (100–120 °C), time (1–2 h), % (v/v)H2O2 concentration (1–3%). Under the prevailing pretreatments, the optimum conditions were predicted and validated to be 109 °C, 2 h, and 1.38% H2O2 which yielded 56% (w/w) cellulose content, 55% (w/w) hemicellulose solubilization, and 48% (w/w) lignin removal. At the established optimum pretreatment conditions, and considering variations in biomass and enzymes loadings, maximum reducing sugars production was 205 mg/g dry biomass at different enzymatic hydrolysis conditions of 3% biomass loading, hydrolysis temperature of 45 °C, hydrolysis time of 24 h, and 35 FPU/g cellulose enzyme loading. The highest cellulose conversion of 33% yielded 24 g/L ethanol at the end of the first day of saccharification and fermentation. Physical, structural, and morphological investigations on raw and treated materials using tools such as stereomicroscopy, scanning electron microscopy, and fourier transform infrared spectroscopy further revealed the effectiveness of chosen method on rice husks biomass.

Keywords: alkaline peroxide; rice; biomass; optimization; peroxide oxidation

Journal Title: Cellulose
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.