LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chemical characteristics and stability of eucalyptus kraft pulps bleached with tertiary amine catalyzed hypochlorous acid

Photo by kellysikkema from unsplash

We recently found that subsequent treatments of hardwood kraft pulps with a tertiary amine (DABCO; 1,4-diazabicyclo[2.2.2]octane) catalyzed hypochlorous acid (Hcat), ozone (Z) and hydrogen peroxide (P) may provide full brightness… Click to show full abstract

We recently found that subsequent treatments of hardwood kraft pulps with a tertiary amine (DABCO; 1,4-diazabicyclo[2.2.2]octane) catalyzed hypochlorous acid (Hcat), ozone (Z) and hydrogen peroxide (P) may provide full brightness with low chemical dosages in a short overall reaction time. Here we report chemical characteristics and stability of Hcat–Z–P bleached eucalyptus kraft pulps. In comparison with a normal ECF (elementary chlorine free) bleached pulp the Hcat–Z–P bleached pulps had low carbonyl group content while the degree of polymerization of cellulose remained at high level. However, the brightness of the Hcat–Z–P bleached pulps was reversed more easily under humid ageing conditions in comparison with the ECF bleached pulp. The discoloration was accompanied by an increase in Raman emission at 1560 cm−1 which is indicative of formation of highly conjugated chromophores. The brightness reversion did not correlate with the carbonyl content that is often considered to be the main origin of the brightness loss under humid conditions. In contrast, the brightness instability of the catalytically bleached pulps possibly resulted from the relatively high organochlorine content.

Keywords: catalyzed hypochlorous; kraft pulps; tertiary amine; kraft; chemical characteristics; hypochlorous acid

Journal Title: Cellulose
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.