LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigation into electrospinning water-soluble xylan: developing applications from highly absorbent and hydrophilic surfaces to carbonized fiber

Photo by a2eorigins from unsplash

Heteropolysaccharides such as xylans are abundant renewable resources that could potentially replace some fossil-fuel derived chemicals and materials in packaging and personal care products. In this study, water-soluble xylan extracted… Click to show full abstract

Heteropolysaccharides such as xylans are abundant renewable resources that could potentially replace some fossil-fuel derived chemicals and materials in packaging and personal care products. In this study, water-soluble xylan extracted from wheat straw was electrospun into nanofibers with a high molecular weight carrier polymer, polyethylene oxide (PEO). Bead-free uniform nanofibers with diameters ranging from 167 to 634 nm were produced with content of PEO as low as 4% of dry weight. The rheology of xylan/PEO aqueous solutions were studied and the effects of xylan-to-PEO ratio on the properties of fibers were correlated. Strong intermolecular interactions between xylan and PEO was found by Fourier transform infrared spectroscopy and differential scanning calorimetry as noted by shifts in vibrational absorbance bands and an increase in the Tg of PEO. In addition, an attempt was made to produce carbon material from xylan-based electrospun fiber mats. The effect of heat treatment in air and inert atmosphere on the hydrophilicity and mechanical properties of electrospun fibers was discussed in terms of making xylan into functional materials. The samples were transformed from being able to be rapidly redissolved in water into water-insoluble, yet hydrophilic materials, and finally to hydrophobic materials when comparing the as-spun fiber to air oxidized fiber and samples after carbonization, respectively.Graphical abstract

Keywords: xylan; xylan peo; water; water soluble; fiber; soluble xylan

Journal Title: Cellulose
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.