This study examines the effect of pulp type on the formability and elongation of paperboard, which are of key importance when producing 3D packages. Material performance was studied with a… Click to show full abstract
This study examines the effect of pulp type on the formability and elongation of paperboard, which are of key importance when producing 3D packages. Material performance was studied with a press-forming machine using laboratory handsheets as substrates. The handsheets were prepared from bleached softwood and hardwood kraft pulps, chemi-thermomechanical pulp, recycled newsprint, and mixtures of birch kraft and other pulps. The effect of microfibrillated cellulose (MFC) on substrate properties and material formability was also investigated. The 3D elongation of MFC-free handsheets varied between 1.2 and 5.5%. Depending on the pulp type and sheet composition, three essential sheet properties were recognized. These properties were bulk, elastic modulus and bending stiffness, the first two of which affect material bending stiffness. Sheets made from softwood fibers were superior to other samples, but their low bending stiffness resulted in distortion of formed trays. A partial replacement of birch kraft with recycled newsprint did not lead to a loss of sheet extensibility, which suggests that the interactions between the converting tools and the substrate have a great effect on material convertibility. Scanning electron micrographs showed that the pulp type affects the mechanism behind fracture initiation. The ability of MFC to increase extensibility was limited to mechanical pulps, indicating the important role of the main pulp component in defining tensile properties.Graphical abstract
               
Click one of the above tabs to view related content.