This paper reports a strong and tough cellulose long fiber (CLF) fabrication by aligning cellulose nanofiber (CNF) through simultaneous application of magnetic and electric fields. As an ingredient of the… Click to show full abstract
This paper reports a strong and tough cellulose long fiber (CLF) fabrication by aligning cellulose nanofiber (CNF) through simultaneous application of magnetic and electric fields. As an ingredient of the CLF, CNF is isolated from hardwood by the combination of chemical and physical methods. A wet-state cellulose long fiber (WCLF) is fabricated by wet spinning. 5T magnetic field, generated in a superconducting DC magnet, is applied to perpendicular to the WCLF. An electric field of 50 V/cm at 100 Hz is applied along the WCLF between two electrode supports. Scanning electron microscopy, two-dimensional wide-angle X-ray diffraction and tensile test demonstrate that when the magnetic and electric fields are applied simultaneously, its Young’s modulus, tensile strength, yield strength, strain at break and toughness of the fabricated CLF are greatly improved with the highest degree of CNF orientation. Unusual toughness improvement of the CLF with other mechanical properties is very promising for fabricating strong and tough CLF.
               
Click one of the above tabs to view related content.