LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Glioprotective Effects of Lingonberry Extract Against Altered Cellular Viability, Acetylcholinesterase Activity, and Oxidative Stress in Lipopolysaccharide-Treated Astrocytes

Photo from wikipedia

Altered astrocytic function is a contributing factor to the development of neurological diseases and neurodegeneration. Berry fruits exert neuroprotective effects by modulating pathways involved in inflammation, neurotransmission, and oxidative stress.… Click to show full abstract

Altered astrocytic function is a contributing factor to the development of neurological diseases and neurodegeneration. Berry fruits exert neuroprotective effects by modulating pathways involved in inflammation, neurotransmission, and oxidative stress. The aim of this study was to examine the effects of the lingonberry extract on cellular viability and oxidative stress in astrocytes exposed to lipopolysaccharide (LPS). In the reversal protocol, primary astrocytic cultures were first exposed to 1 µg/mL LPS for 3 h and subsequently treated with lingonberry extract (10, 30, 50, and 100 μg/mL) for 24 and 48 h. In the prevention protocol, exposure to the lingonberry extract was performed before treatment with LPS. In both reversal and prevention protocols, the lingonberry extracts, from 10 to 100 μg/mL, attenuated LPS-induced increase in reactive oxygen species (around 55 and 45%, respectively, P < 0.01), nitrite levels (around 50 and 45%, respectively, P < 0.05), and acetylcholinesterase activity (around 45 and 60%, respectively, P < 0.05) in astrocytic cultures at 24 and 48 h. Also, in both reversal and prevention protocols, the lingonberry extract also prevented and reversed the LPS-induced decreased cellular viability (around 45 and 90%, respectively, P < 0.05), thiol content (around 55 and 70%, respectively, P < 0.05), and superoxide dismutase activity (around 50 and 145%, respectively, P < 0.05), in astrocytes at both 24 and 48 h. Our findings suggested that the lingonberry extract exerted a glioprotective effect through an anti-oxidative mechanism against LPS-induced astrocytic damage.

Keywords: around respectively; lingonberry extract; cellular viability; oxidative stress

Journal Title: Cellular and Molecular Neurobiology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.