LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Neuroprotective Effects of Early Brain Injury after Subarachnoid Hemorrhage in Rats by Calcium Channel Mediating Hydrogen Sulfide

Photo from wikipedia

The present study explored the modulating apoptosis effect of hydrogen sulfide (H2S) in subarachnoid hemorrhage (SAH) rats and its exact mechanism. A rat SAH model established by intravascular puncturing was… Click to show full abstract

The present study explored the modulating apoptosis effect of hydrogen sulfide (H2S) in subarachnoid hemorrhage (SAH) rats and its exact mechanism. A rat SAH model established by intravascular puncturing was used for the present study. After giving NaHS (donor of H2S), an L-type calcium channel opener (Bay K8644), or a calcium channel agonist (nifedipine), the neurological function of the rats, associated pathological changes, and expression of apoptosis-related proteins (Bcl-2, Bax, and caspase-3) and microtubule-associated protein (MAP-2) were examined. The concentration of H2S and expression of cystathionine beta synthase in the hippocampus changed upon early brain injury (EBI) after SAH. Compared with the SAH group, the neurological function of the rats and microstructure observed by electron microscopy were better in the SAH + NaHS group and SAH + Bay K8644 group. It was observed that apoptosis was more obvious in the SAH group than in the control group and was alleviated in the SAH + NaHS group. Furthermore, the alleviating effect of NaHS was partially weakened by nifedipine, indicating that the effect of anti-apoptosis in H2S might be correlated with the calcium channel. The expression of Bax and caspase-3 was elevated, while the expression of Bcl-2 decreased in the SAH group but improved in the SAH + NaHS and SAH + Bay K8644 group. Compared with the SAH + NaHS group, the expression of pro-apoptotic proteins was higher in the SAH + NaHS + nifedipine group. Therefore, upon EBI following SAH, the H2S system plays an important neurological protective effect by modulating the function of the L-type calcium channel and inhibiting apoptosis.

Keywords: calcium channel; sah nahs; group; subarachnoid hemorrhage; hydrogen sulfide

Journal Title: Cellular and Molecular Neurobiology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.