Bilingual termbanks are important for many natural language processing applications, especially in translation workflows in industrial settings. In this paper, we apply a log-likelihood comparison method to extract monolingual terminology… Click to show full abstract
Bilingual termbanks are important for many natural language processing applications, especially in translation workflows in industrial settings. In this paper, we apply a log-likelihood comparison method to extract monolingual terminology from the source and target sides of a parallel corpus. The initial candidate terminology list is prepared by taking all arbitrary n-gram word sequences from the corpus. Then, a well-known statistical measure (the Dice coefficient) is employed in order to remove any multi-word terms with weak associations from the candidate term list. Thereafter, the log-likelihood comparison method is applied to rank the phrasal candidate term list. Then, using a phrase-based statistical machine translation model, we create a bilingual terminology with the extracted monolingual term lists. We integrate an external knowledge source—the Wikipedia cross-language link databases—into the terminology extraction (TE) model to assist two processes: (a) the ranking of the extracted terminology list, and (b) the selection of appropriate target terms for a source term. First, we report the performance of our monolingual TE model compared to a number of the state-of-the-art TE models on English-to-Turkish and English-to-Hindi data sets. Then, we evaluate our novel bilingual TE model on an English-to-Turkish data set, and report the automatic evaluation results. We also manually evaluate our novel TE model on English-to-Spanish and English-to-Hindi data sets, and observe excellent performance for all domains.
               
Click one of the above tabs to view related content.