LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

VERTa: a linguistic approach to automatic machine translation evaluation

Photo by cokdewisnu from unsplash

Machine translation (MT) is directly linked to its evaluation in order to both compare different MT system outputs and analyse system errors so that they can be addressed and corrected.… Click to show full abstract

Machine translation (MT) is directly linked to its evaluation in order to both compare different MT system outputs and analyse system errors so that they can be addressed and corrected. As a consequence, MT evaluation has become increasingly important and popular in the last decade, leading to the development of MT evaluation metrics aiming at automatically assessing MT output. Most of these metrics use reference translations in order to compare system output, and the most well-known and widely spread work at lexical level. In this study we describe and present a linguistically-motivated metric, VERTa, which aims at using and combining a wide variety of linguistic features at lexical, morphological, syntactic and semantic level. Before designing and developing VERTa a qualitative linguistic analysis of data was performed so as to identify the linguistic phenomena that an MT metric must consider (Comelles et al. 2017). In the present study we introduce VERTa’s design and architecture and we report the experiments performed in order to develop the metric and to check the suitability and interaction of the linguistic information used. The experiments carried out go beyond traditional correlation scores and step towards a more qualitative approach based on linguistic analysis. Finally, in order to check the validity of the metric, an evaluation has been conducted comparing the metric’s performance to that of other well-known state-of-the-art MT metrics.

Keywords: evaluation; order; machine translation; verta

Journal Title: Language Resources and Evaluation
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.