LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The ultimate cost of carbon

Photo from wikipedia

We estimate the potential ultimate cost of fossil-fuel carbon to a long-lived human population over a one million–year time scale. We assume that this hypothetical population is technologically stationary and… Click to show full abstract

We estimate the potential ultimate cost of fossil-fuel carbon to a long-lived human population over a one million–year time scale. We assume that this hypothetical population is technologically stationary and agriculturally based, and estimate climate impacts as fractional decreases in economic activity, potentially amplified by a human population response to a diminished human carrying capacity. Monetary costs are converted to units of present-day dollars by multiplying the future damage fractions by the present-day global world production, and integrated through time with no loss due from time-preference discounting. Ultimate costs of C range from $10k to $750k per ton for various assumptions about the magnitude and longevity of economic impacts, with a best-estimate value of about $100k per ton of C. Most of the uncertainty arises from the economic parameters of the model and, among the geophysical parameters, from the climate sensitivity. We argue that the ultimate cost of carbon is a first approximation of our potential culpability to future generations for our fossil energy use, expressed in units that are relevant to us.

Keywords: cost carbon; estimate; cost; population; ultimate cost

Journal Title: Climatic Change
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.