LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The implementation of a cloud city traffic state assessment system using a novel big data architecture

Photo from wikipedia

In order to store and analyze the increasing data in recent years, big data techniques are applied to many fields such as healthcare, manufacturing, telecommunications, retail, energy, transportation, automotive, security,… Click to show full abstract

In order to store and analyze the increasing data in recent years, big data techniques are applied to many fields such as healthcare, manufacturing, telecommunications, retail, energy, transportation, automotive, security, environment, etc. This work implements a city traffic state assessment system in cloud using a novel big data architecture. The proposed system provides the real-time busses location and real-time traffic state, especially the real-time traffic state nearby, through open data, cloud computing, bid data technology, clustering methods, and irregular moving average. With the high-scalability cloud technologies, Hadoop and Spark, the proposed system architecture is first implemented successfully and efficiently. Next, we utilize irregular moving average and clustering methods to find the area of traffic jam. Finally, three important experiments are performed. The first experiment indicates that the computing ability of Spark is better than that of Hadoop. The second experiment applies Spark to process bus location data under different number of executors. In the last experiment, we apply irregular moving average and clustering methods to efficiently find the area of traffic jam in Taiwan Boulevard which is the main road in Taichung city. Based on these experimental results, the provided system services are present via an advanced web technology.

Keywords: traffic; big data; system; city; traffic state

Journal Title: Cluster Computing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.