LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Trajectory based vehicle counting and anomalous event visualization in smart cities

Photo from wikipedia

Motion pattern analysis can be performed automatically on the basis of object trajectories by means of tracking videos; an effective approach to analyse and to model the traffic behaviour; is… Click to show full abstract

Motion pattern analysis can be performed automatically on the basis of object trajectories by means of tracking videos; an effective approach to analyse and to model the traffic behaviour; is important to describe motion by taking the whole trajectory whereas it’s more essential to identify and evaluate object behaviour online. In this paper, pattern detection approach is presented which takes spatio-temporal characteristic of vehicle trajectories. A real time system is built to infer and track the object behaviour quickly by online performing trajectory analysis. Every independent vehicle in the video frame is tracked over time. As the anomaly behaviour occurs, glyph is generated to show it occurrences. Vehicle counting is done by estimating the trajectories and compared with Hungarian tracker. Several surveillance videos are taken into account for the performance checking of system. Experimental results demonstrated that proposed method in comparison with the state of the art algorithms, provides robust vehicle density estimation and event information i.e., lane change information.

Keywords: trajectory; based vehicle; vehicle; vehicle counting; event; trajectory based

Journal Title: Cluster Computing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.