LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Clutch control of a hybrid electrical vehicle based on neuron-adaptive PID algorithm

Photo by anewevisual from unsplash

This paper presents the detailed analysis of a pneumatic clutch actuator with an artificial intelligence control algorithm. The low cost of pneumatic actuator makes it an advantage in automotive applications,… Click to show full abstract

This paper presents the detailed analysis of a pneumatic clutch actuator with an artificial intelligence control algorithm. The low cost of pneumatic actuator makes it an advantage in automotive applications, but fast and precise control is difficult on account of its time-varying and nonlinear character. In order to achieve good performance and save cost, the development of a fast, accurate, and inexpensive automatic pneumatic actuator clutch system for a single-axle parallel hybrid electrical is important. Targeted for the working principle of electric-drive automated mechanical transmission parallel hybrid system for shifting and clutch dynamic control during operation mode switch course, the design adopts single neuron-adaptive PID-based clutch operation process, proposed the clutch actuator piston non-contact cylinder lock control method to overcome time-varying and nonlinear characteristics’ impact present in the pneumatic actuator closed-loop control, and through the effective control of segment displacement self-diagnosis during the clutch operation process, performs variable clutch control and improve the actuator fault tolerance. Experiments show that the proposed control algorithm is feasible, which has effectively reduced the torque shock and clutch friction work during clutch engaging process.

Keywords: hybrid electrical; control; clutch; neuron adaptive; actuator; adaptive pid

Journal Title: Cluster Computing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.