LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A robust wavelet based decomposition of facial images to improve recognition accuracy in standard appearance based statistical face recognition methods

Photo from wikipedia

In traditional appearance based face recognition approaches, the facial images in standard face databases are used as it is for testing standard statistical face recognition algorithms. Due to the camera… Click to show full abstract

In traditional appearance based face recognition approaches, the facial images in standard face databases are used as it is for testing standard statistical face recognition algorithms. Due to the camera angle, position and lightening conditions, the facial image captured contains occlusion. Human pose, facial expressions and alignment of face with respect to camera axis also result in occluded image. Sometimes the background of the face also covered during the facial image capturing. We proposed an approach, called wavelet based facial image decomposition (WBFD) and in this approach the facial images are decomposed using two levels wavelet transform. In the faces obtained after two level wavelet decomposition, the occlusion and background images are suppressed. The face images from Yale database are used for our experiments. In order to test the performance of proposed WBFD approach, the face images obtained from WBFD approach, resized Yale face and Yale face from the original Yale face database are tested with five standard statistical appearance based face recognition algorithms such as eigen face, Fischer discriminant analysis, kernel principal component analysis, independent component analysis and 2D principal component analysis. The experimental results obtained show that, the proposed WBFD approach gives high recognition accuracy and require minimum recognition time in seconds for all the five face recognition methods.

Keywords: appearance based; facial images; recognition; face; face recognition

Journal Title: Cluster Computing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.