LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

AI-based software-defined virtual network function scheduling with delay optimization

Photo by thisisengineering from unsplash

AI-based network function virtualization (NFV) is an emerging technique that separates network control functionality from dedicated hardware middleboxes and is virtualized to reduce capital and operational costs. With the advances… Click to show full abstract

AI-based network function virtualization (NFV) is an emerging technique that separates network control functionality from dedicated hardware middleboxes and is virtualized to reduce capital and operational costs. With the advances of NFV and AI-based software-defined networks, dynamic network service demands can be flexibly and effectively accomplished by connecting multiple virtual network functions (VNFs) running on virtual machines. However, such promising technology also introduces several new research challenges. Due to resource constraints, service providers may have to deploy different service function chains (SFCs) to share the same physical resources. Such sharing inevitably forces the scheduling of the SFCs and resources, which consumes computational time and introduces problems associated with reducing the response delay. In this paper, we address this challenge by developing two dynamic priority methods for queuing AI-based VNFs/services to improve the user experience. We account for both transmission and processing delays in our proposed algorithms and achieve a new processing order (scheduler) for VNFs to minimize the overall scheduling delay. The simulation results indicate that the proposed scheme can promote the performance of AI-based VNFs/services to meet strict latency requirements.

Keywords: network function; network; software defined; delay; function; based software

Journal Title: Cluster Computing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.