Data that continuously track the dynamics of large populations have the potential to revolutionize how we study complex social systems. However, coping with massive, noisy, unstructured, and disparate data streams… Click to show full abstract
Data that continuously track the dynamics of large populations have the potential to revolutionize how we study complex social systems. However, coping with massive, noisy, unstructured, and disparate data streams is not easy. In this paper, we describe a particle filter algorithm that integrates signal processing and simulation modeling to study complex social systems using massive, noisy, unstructured data. This integration enables researchers to specify and track the dynamics of real-world complex social systems by building a simulation model. To show the effectiveness of this algorithm, we infer city-scale traffic dynamics from the observed trajectories of a small number of probe vehicles uniformly sampled from the system. The results show that our model can not only track and predict human mobility, but also explain how traffic is generated through the movements of individual vehicles. The algorithm and its application point to a new way of bringing together modelers and data miners to turn the real world into a living lab.
               
Click one of the above tabs to view related content.