LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A nonmonotone Jacobian smoothing inexact Newton method for NCP

Photo by aldebarans from unsplash

In this paper we propose Jacobian smoothing inexact Newton method for nonlinear complementarity problems (NCP) with derivative-free nonmonotone line search. This nonmonotone line search technique ensures globalization and is a… Click to show full abstract

In this paper we propose Jacobian smoothing inexact Newton method for nonlinear complementarity problems (NCP) with derivative-free nonmonotone line search. This nonmonotone line search technique ensures globalization and is a combination of Grippo-Lampariello-Lucidi (GLL) and Li-Fukushima (LF) strategies, with the aim to take into account their advantages. The method is based on very well known Fischer-Burmeister reformulation of NCP and its smoothing Kanzow’s approximation. The mixed Newton equation, which combines the semismooth function with the Jacobian of its smooth operator, is solved approximately in every iteration, so the method belongs to the class of Jacobian smoothing inexact Newton methods. The inexact search direction is not in general a descent direction and this is the reason why nonmonotone scheme is used for globalization. Global convergence and local superlinear convergence of method are proved. Numerical performances are also analyzed and point out that high level of nonmonotonicity of this line search rule enables robust and efficient method.

Keywords: inexact newton; jacobian smoothing; smoothing inexact; method; newton method; line search

Journal Title: Computational Optimization and Applications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.