LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the worst-case evaluation complexity of non-monotone line search algorithms

Photo from wikipedia

A general class of non-monotone line search algorithms has been proposed by Sachs and Sachs (Control Cybern 40:1059–1075, 2011) for smooth unconstrained optimization, generalizing various non-monotone step size rules such… Click to show full abstract

A general class of non-monotone line search algorithms has been proposed by Sachs and Sachs (Control Cybern 40:1059–1075, 2011) for smooth unconstrained optimization, generalizing various non-monotone step size rules such as the modified Armijo rule of Zhang and Hager (SIAM J Optim 14:1043–1056, 2004). In this paper, the worst-case complexity of this class of non-monotone algorithms is studied. The analysis is carried out in the context of non-convex, convex and strongly convex objectives with Lipschitz continuous gradients. Despite de nonmonotonicity in the decrease of function values, the complexity bounds obtained agree in order with the bounds already established for monotone algorithms.

Keywords: non monotone; monotone line; complexity; algorithms; monotone; line search

Journal Title: Computational Optimization and Applications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.