LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An inexact proximal generalized alternating direction method of multipliers

Photo from wikipedia

This paper proposes and analyzes an inexact variant of the proximal generalized alternating direction method of multipliers (ADMM) for solving separable linearly constrained convex optimization problems. In this variant, the… Click to show full abstract

This paper proposes and analyzes an inexact variant of the proximal generalized alternating direction method of multipliers (ADMM) for solving separable linearly constrained convex optimization problems. In this variant, the first subproblem is approximately solved using a relative error condition whereas the second one is assumed to be easy to solve. In many ADMM applications, one of the subproblems has a closed-form solution; for instance, $$\ell _1$$ ℓ 1 regularized convex composite optimization problems. The proposed method possesses iteration-complexity bounds similar to its exact version. More specifically, it is shown that, for a given tolerance $$\rho >0$$ ρ > 0 , an approximate solution of the Lagrangian system associated to the problem under consideration is obtained in at most $$\mathcal {O}(1/\rho ^2)$$ O ( 1 / ρ 2 ) (resp. $$\mathcal {O}(1/\rho )$$ O ( 1 / ρ ) in the ergodic case) iterations. Numerical experiments are presented to illustrate the performance of the proposed scheme.

Keywords: alternating direction; proximal generalized; direction method; generalized alternating; method; method multipliers

Journal Title: Computational Optimization and Applications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.