This paper aims to shed light on the post-editing process of the recently-introduced neural machine translation (NMT) paradigm. Using simple and more complex texts, we first evaluate the output quality… Click to show full abstract
This paper aims to shed light on the post-editing process of the recently-introduced neural machine translation (NMT) paradigm. Using simple and more complex texts, we first evaluate the output quality from English to Chinese phrase-based statistical (PBSMT) and NMT systems. Nine raters assess the MT quality in terms of fluency and accuracy and find that NMT produces higher-rated translations than PBSMT for both texts. Then we analyze the effort expended by 68 student translators during HT and when post-editing NMT and PBSMT output. Our measures of post-editing effort are all positively correlated for both NMT and PBSMT post-editing. Our findings suggest that although post-editing output from NMT is not always significantly faster than post-editing PBSMT, it significantly reduces the technical and cognitive effort. We also find that, in contrast to HT, post-editing effort is not necessarily correlated with source text complexity.
               
Click one of the above tabs to view related content.