LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rapid Boulton–Katritzky rearrangement of 5-aryl-3-[2-(piperidin-1-yl)ethyl]-1,2,4-oxadiazoles upon exposure to water and HCl

Photo by 99bibin from unsplash

Сhemical stability of 3-(2-aminoethyl)-5-substituted 1,2,4-oxadiazoles was studied with respect to Boulton–Katritzky rearrangement, which is known to produce planar pyrazolines and pyrazoles upon heating in DMF at 150°C or without solvent… Click to show full abstract

Сhemical stability of 3-(2-aminoethyl)-5-substituted 1,2,4-oxadiazoles was studied with respect to Boulton–Katritzky rearrangement, which is known to produce planar pyrazolines and pyrazoles upon heating in DMF at 150°C or without solvent at 240°C. The reactivity of 5-aryl-3-[2-(piperidin-1-yl)ethyl]-1,2,4-oxadiazoles in one type of Boulton–Katritzky rearrangement was observed at room temperature in H2O, DMF + H2O, and in the presence of HCl. Hydrolysis of 3,5-disubstituted 1,2,4-oxadiazoles under the first two conditions gave 2-amino-1,5-diazaspiro[4.5]dec-1-en-5-ium benzoates, while the action of HCl on 3,5-disubstituted 1,2,4-oxadiazoles produced their hydrochlorides along with 2-amino-1,5-diazaspiro[4.5]dec-1-en-5-ium chloride hydrate. Thus, the reaction afforded spiropyrazoline compounds instead of products with a planar structure.

Keywords: hcl; katritzky rearrangement; boulton katritzky; aryl piperidin

Journal Title: Chemistry of Heterocyclic Compounds
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.