We consider the escape of a photon from a single-mode optical cavity with a controlled variable intensity. The source of the photon is a relaxing two-level atom. The quantum bottleneck… Click to show full abstract
We consider the escape of a photon from a single-mode optical cavity with a controlled variable intensity. The source of the photon is a relaxing two-level atom. The quantum bottleneck effect involves a counterintuitive decrease of the probability of photon escape from the cavity with the increase of its escape intensity. Numerical simulations of the process were carried out using the basic Lindblad quantum equation for the Jaynes-Cummings model with thermal relaxation. A quasi-classical description of the bottleneck mechanism is presented, similar to the Zeno effect. The counterintuitive behavior described plays an important role in the description of the exchange of single photons in nanosystems and in molecular complexes converting solar energy in bacteria.
               
Click one of the above tabs to view related content.