LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Wet milling of large quantities of human excision adipose tissue for the isolation of stromal vascular fraction cells

Photo from wikipedia

The isolation of stromal vascular fraction (SVF) cells from excised human adipose tissue, for clinical or research purposes, implies the tedious and time consuming process of manual mincing prior to… Click to show full abstract

The isolation of stromal vascular fraction (SVF) cells from excised human adipose tissue, for clinical or research purposes, implies the tedious and time consuming process of manual mincing prior to enzymatic digestion. Since no efficient alternative technique to this current standard procedure has been proposed so far, the aim of this study was to test a milling procedure, using two simple, inexpensive and commercially available manual meat grinders, to process large amounts of adipose tissue. The procedure was assessed on adipose tissue resections from seven human donors and compared to manual mincing with scalpels. The processed adipose tissues were digested and the resulting SVF cells compared in terms of number, clonogenicity and differentiation capacity. After 10 min of processing, either device tested yielded on average sixfold more processed material for subsequent cell isolation than manual mincing. The isolation yield of SVF cells (isolated cells per ml of adipose tissue), their viability, phenotype, clonogenicity and osteogenic/adipogenic differentiation capacity, tested by production of mineralized matrix and lipid vacuoles, respectively, were comparable. This new method is practical and inexpensive and represents an efficient alternative to the current standard for large scale adipose tissue resection processing. A device based on the milling principle could be embedded within a streamlined system for isolation and clinical use of SVF cells from adipose tissue excision.

Keywords: isolation stromal; vascular fraction; adipose tissue; isolation; stromal vascular

Journal Title: Cytotechnology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.