The bHLH-PAS transcription factors clock circadian regulator (CLOCK) and brain and muscle ARNT-like protein 1 (BMAL1) play essential roles in the generation of circadian gene expression rhythms through the activation… Click to show full abstract
The bHLH-PAS transcription factors clock circadian regulator (CLOCK) and brain and muscle ARNT-like protein 1 (BMAL1) play essential roles in the generation of circadian gene expression rhythms through the activation of E-box-mediated transcription. Importantly, circadian transcriptional rhythms mediated by CLOCK/BMAL1 are observed in peripheral tissues as well as in the suprachiasmatic nucleus and contribute to tissue-specific functions. These findings suggest that CLOCK/BMAL1 have roles in many biological phenomena by interacting with various cellular regulators. In the present study, to understand the mechanisms underlying the multiple functional roles of CLOCK, we tried to identify new proteins that interact with CLOCK using a yeast two-hybrid system. We identified neuroendocrine-specific protein (NSP)-C, which is highly expressed in the brain, as a positive regulator of CLOCK/BMAL1-mediated transcription. We found that NSP-C interacted with CLOCK in mammalian cells. Co-expression of NSP-C with CLOCK/BMAL1 enhanced the transcriptional activation by CLOCK/BMAL1. Furthermore, knockdown of endogenous NSP-C by small interfering RNA (siRNA) suppressed E-box-mediated transcription, while this reduction of transcription was rescued by the expression of NSP-C protected from the action of siRNA. These observations suggest that NSP-C contributes to the upregulation of CLOCK/BMAL1-mediated transcription.
               
Click one of the above tabs to view related content.