LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Constrained distance based clustering for time-series: a comparative and experimental study

Photo from wikipedia

Constrained clustering is becoming an increasingly popular approach in data mining. It offers a balance between the complexity of producing a formal definition of thematic classes—required by supervised methods—and unsupervised… Click to show full abstract

Constrained clustering is becoming an increasingly popular approach in data mining. It offers a balance between the complexity of producing a formal definition of thematic classes—required by supervised methods—and unsupervised approaches, which ignore expert knowledge and intuition. Nevertheless, the application of constrained clustering to time-series analysis is relatively unknown. This is partly due to the unsuitability of the Euclidean distance metric, which is typically used in data mining, to time-series data. This article addresses this divide by presenting an exhaustive review of constrained clustering algorithms and by modifying publicly available implementations to use a more appropriate distance measure—dynamic time warping. It presents a comparative study, in which their performance is evaluated when applied to time-series. It is found that k-means based algorithms become computationally expensive and unstable under these modifications. Spectral approaches are easily applied and offer state-of-the-art performance, whereas declarative approaches are also easily applied and guarantee constraint satisfaction. An analysis of the results raises several influencing factors to an algorithm’s performance when constraints are introduced.

Keywords: time series; clustering time; distance; time; study

Journal Title: Data Mining and Knowledge Discovery
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.