The aim of this research was to assess interactions between metals at low exposure concentrations (Maximum-Permissible-Concentrations accepted for the inland waters in EU) and to assess possible influence of background… Click to show full abstract
The aim of this research was to assess interactions between metals at low exposure concentrations (Maximum-Permissible-Concentrations accepted for the inland waters in EU) and to assess possible influence of background exposure (10-times reduced concentration of a single metal) on toxicological significance of selected biomarkers in Salmo salar after treatment with metal mixture (Zn – 0.1, Cu – 0.01, Ni – 0.01, Cr – 0.01, Pb – 0.005 and Cd – 0.005 mg/L). The tissue-specific bioaccumulation, genotoxicity and cytotoxicity responses (erythrocytic nuclear abnormalities assay) in peripheral blood, kidneys, gills and liver erythrocytes of fish to metal mixtures were assessed after 14 days treatment. Treatment with primary mixture (MIX) or two variants of this mixture (Cr↓ (10 times reduced Cr6+ concentration) and Cu↓ (10 times reduced Cu2+ concentration)) induced the strongest responses in genotoxicity and cytotoxicity endpoints. Exposure to these mixtures highly affected Zn, Cu and Cd bioaccumulation in liver tissue. The highest amount of Ni accumulated was measured after Cd↓ treatment in all tissues. Treatments with reduced concentration of non-essential metal resulted in an increased accumulation of Pb, Ni, or Cd; treatments with reduced concentration of essential metal resulted in a reduced accumulation of certain metals (especially Cd and Pb) in tissues compared between treatments. Glucose content in blood and behavioural endpoints were evaluated after short-term exposure to metal mixtures (MIX, Cr↓, Cu↓). Significant increase in blood glucose concentration was measured after all treatments. These metal mixtures elicit significant behavioural alterations in fish. Consequently, this research revealed a significant influence of background exposure considering mixture toxicity.Highlights10-fold reduction of mixtures components highly affected bioaccumulation of several metals in analysed tissues of Salmo salar.Significant influence of background exposure considering mixture toxicity was detected.Exposure to metal mixtures at environmentally relevant concentrations elicited genotoxicity and cytotoxicity.Alterations in glucose content in blood and behavioural responses were observed.
               
Click one of the above tabs to view related content.