LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Integrated comparison of growth and oxidative stress induced by tylosin in two freshwater algae Chlorella vulgaris and Raphidocelis subcapitata

Photo from wikipedia

Two model algae, Chlorella vulgaris (C. vulgaris) and Raphidocelis subcapitata (R. subcapitata), are commonly used in registration procedures to evaluate compounds with antimicrobial capacity. However, it has been found that… Click to show full abstract

Two model algae, Chlorella vulgaris (C. vulgaris) and Raphidocelis subcapitata (R. subcapitata), are commonly used in registration procedures to evaluate compounds with antimicrobial capacity. However, it has been found that these two algae show considerable differences in sensitivity when exposed to antibiotics. The selection of a suitable test species plays a crucial role in assessing the environmental hazards and risks of a compound, as the balance between oxidative stress and antioxidants is a key factor for alga growth. This study was conducted to investigate the status of oxidative stress and mechanism of antioxidant defense system of algae under antibiotic stress. Different tylosin (TYN) exposure—concentrations were used for the tests in this study. Oxidative stress biomarkers (malondialdehyde (MDA)), non-enzymatic antioxidants (reduced glutathione (GSH)), antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GP), glutathione S-transferase (GST)) and photosynthetic pigments were measured to determine the status of the antioxidant defense system. With increasing TYN concentration, the growth of R. subcapitata was significantly inhibited, while there was no effect on C. vulgaris. When the growth of R. subcapitata was inhibited, the content of MDA was significantly increased and the antioxidant system was activated, which indicated a significant increase in the activity of SOD and CAT.

Keywords: stress; algae chlorella; oxidative stress; growth; subcapitata; vulgaris

Journal Title: Ecotoxicology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.