LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reductive dissolution and sequestration of arsenic by microbial iron and thiosulfate reduction

Iron oxide and oxy-hydroxide are commonly used for remediation and rehabilitation of arsenic (As)-contaminated soil and water. However, the stability of As sequestered by iron oxide and oxy-hydroxide under anaerobic… Click to show full abstract

Iron oxide and oxy-hydroxide are commonly used for remediation and rehabilitation of arsenic (As)-contaminated soil and water. However, the stability of As sequestered by iron oxide and oxy-hydroxide under anaerobic conditions is still uncertain. Geochemical properties influence the behavior of As; in addition, microbial activities affect the mobility of sequestered As in soil and water. Microbial-mediated iron reduction can increase the mobility of As by reductive dissolution of Fe oxide; however, microbial-mediated sulfate reduction can decrease the mobility of As by sulfide mineral precipitation. This study investigated the geomicrobial impact on the behavior of As and stability of sequestered As in iron-rich sediment under anaerobic conditions. Increase in Fe(II) concentrations in water was evidence of microbial-mediated iron reduction. Arsenic concentrations increased with Fe(II) concentration; however, the thiosulfate reduction process also induced immobilization of As through the precipitation of AsFeS. Therefore, microbial-mediated iron reduction and thiosulfate reduction have opposite influences on the mobility of As under anaerobic condition.

Keywords: reduction; mobility; reductive dissolution; thiosulfate reduction; iron; microbial mediated

Journal Title: Environmental Geochemistry and Health
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.