In this study, the effect of biochar (BC) derived from Litchi chinensis Sonn. and its modification, including Ca-biochar (Ca-BC) and Fe–Mn-biochar (Fe–Mn-BC), on the transportation of oestrone (E1) in water… Click to show full abstract
In this study, the effect of biochar (BC) derived from Litchi chinensis Sonn. and its modification, including Ca-biochar (Ca-BC) and Fe–Mn-biochar (Fe–Mn-BC), on the transportation of oestrone (E1) in water and soil was investigated. Fe–Mn-BC showed better adsorption ability than other types of biochar (BC, Ca-BC) under different conditions (humic acid, pH, ionic strength) in an aqueous environment. The maximum mass of sorbent at 298 K increased from 1.12 mg g−1 (BC) to 4.18 mg g−1 (Fe–Mn-BC). Humic acid had a greater impact on aqueous E1 adsorption on these biochars than did the pH and ionic strength. Fe–Mn-BC as a soil amendment had a great control of E1 transport in soil, and no leachate of E1 was observed in the column experiment. E1 mobility showed strong retardation in amended soil with Ca-BC (Rf = 11.2) compared with raw soil (Rf = 7.1). These results suggested that Fe–Mn-BC was more effective in controlling E1 transportation, and Fe–Mn-BC could be used as an alternative and inexpensive adsorbent to reduce E1 contaminants from water and soil.
               
Click one of the above tabs to view related content.