LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Arsenic and lead in soil: impacts on element mobility and bioaccessibility

Photo from wikipedia

Long-term brown coal mining contributes to risk element contents in soils surrounding coal basins. However, there is a lack of bioaccessibility characterization of the risk elements in the soils at… Click to show full abstract

Long-term brown coal mining contributes to risk element contents in soils surrounding coal basins. However, there is a lack of bioaccessibility characterization of the risk elements in the soils at the impacted locations for estimation of the potential health risk, in relation to the effects of soil particle size and element origin. In this study, soils from different geological areas (geogenic vs. anthropogenic) were sampled around the Most brown coal basin, Czech Republic. These soils were passed through sieves to obtain seven aggregate size fractions. For an estimation of the oral bioaccessibility of As and Pb in the size fractions, the physiologically based extraction test was applied, whereas the potential pulmonary bioaccessibility of the elements was estimated by using both Gamble’s and Hatch’s tests. The results showed that the geochemical pattern of the investigated elements clearly separates the soil samples collected from the mountain region (mineralization from geogenic processes) from those of the basin region (extensive coal mining). For As, the results indicated that it poses higher risks in the anthropogenically affected basin region due to its higher gastro-intestinal and pulmonary bioaccessibility in soil samples in this area. A higher bioaccessibility of As in the soils was recorded in the finer grain size fractions, which are usually air-borne and can be easily ingested and/or inhaled, leading to potential health risks to humans and livestock. The opposite pattern, with a higher content on coarse particles, was recorded for Pb, indicating a potential risk of livestock in the non-forest mountainous areas.

Keywords: arsenic lead; size fractions; bioaccessibility; soil; coal

Journal Title: Environmental Geochemistry and Health
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.