LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling of an activated sludge process for effluent prediction—a comparative study using ANFIS and GLM regression

Photo from wikipedia

In this paper, nonlinear system identification of the activated sludge process in an industrial wastewater treatment plant was completed using adaptive neuro-fuzzy inference system (ANFIS) and generalized linear model (GLM)… Click to show full abstract

In this paper, nonlinear system identification of the activated sludge process in an industrial wastewater treatment plant was completed using adaptive neuro-fuzzy inference system (ANFIS) and generalized linear model (GLM) regression. Predictive models of the effluent chemical and 5-day biochemical oxygen demands were developed from measured past inputs and outputs. From a set of candidates, least absolute shrinkage and selection operator (LASSO), and a fuzzy brute-force search were utilized in selecting the best combination of regressors for the GLMs and ANFIS models respectively. Root mean square error (RMSE) and Pearson’s correlation coefficient (R-value) served as metrics in assessing the predicting performance of the models. Contrasted with the GLM predictions, the obtained modeling results show that the ANFIS models provide better predictions of the studied effluent variables. The results of the empirical search for the dominant regressors indicate the models have an enormous potential in the estimation of the time lag before a desired effluent quality can be realized, and preempting process disturbances. Hence, the models can be used in developing a software tool that will facilitate the effective management of the treatment operation.

Keywords: process; sludge process; activated sludge; glm regression

Journal Title: Environmental Monitoring and Assessment
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.