LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiple genetic programming: a new approach to improve genetic-based month ahead rainfall forecasts

Photo from wikipedia

It is well documented that standalone machine learning methods are not suitable for rainfall forecasting in long lead-time horizons. The task is more difficult in arid and semiarid regions. Addressing… Click to show full abstract

It is well documented that standalone machine learning methods are not suitable for rainfall forecasting in long lead-time horizons. The task is more difficult in arid and semiarid regions. Addressing these issues, the present paper introduces a hybrid machine learning model, namely multiple genetic programming (MGP), that improves the predictive accuracy of the standalone genetic programming (GP) technique when used for 1-month ahead rainfall forecasting. The new model uses a multi-step evolutionary search algorithm in which high-performance rain-borne genes from a multigene GP solution are recombined through a classic GP engine. The model is demonstrated using rainfall measurements from two meteorology stations in Lake Urmia Basin, Iran. The efficiency of the MGP was cross-validated against the benchmark models, namely standard GP and autoregressive state-space. The results indicated that the MGP statistically outperforms the benchmarks at both rain gauge stations. It may reduce the absolute and relative errors by approximately up to 15% and 40%, respectively. This significant improvement over standalone GP together with the explicit structure of the MGP model endorse its application for 1-month ahead rainfall forecasting in practice.

Keywords: genetic programming; multiple genetic; month ahead; model; ahead rainfall

Journal Title: Environmental Monitoring and Assessment
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.