LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Removal of inorganic and organic phosphorus compounds from aqueous solution by ferrihydrite decoration onto graphene

Photo from wikipedia

Existing research on phosphorus removal from wastewater mostly focused on inorganic phosphorus while ignoring organic phosphorus, which has potential bioavailability. This study aims to provide an innovation for the development… Click to show full abstract

Existing research on phosphorus removal from wastewater mostly focused on inorganic phosphorus while ignoring organic phosphorus, which has potential bioavailability. This study aims to provide an innovation for the development of advanced treatment material for both inorganic and organic phosphorus removal in water. In this study, ferrihydrite loaded on the graphene oxide (FeOOH-GO) composite adsorbent was synthesized by surface precipitation method, and its ability to remove both phosphate and diazinon as forms of inorganic and organic phosphorous from water was investigated. Characterization of the loaded composite using X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier transform-infrared spectroscopy (FTIR) indicated that FeOOH was successfully loaded onto graphene. The results of batch adsorption experiments showed that the adsorbent could remove both inorganic and organic phosphorus compounds simultaneously from water. When FeOOH content is 40%, the equilibrium adsorption amount of FeOOH-GO composite adsorbent for phosphate and diazinon was 5.81 and 23.20 mg g −1 , respectively. Environmental parameters such as pH and initial concentration have important influence on phosphorus removal by FeOOH-GO composite adsorbent and the removal efficiency of the inorganic and organic phosphorus from water decreases by increasing the initial concentration of phosphate and diazinon and the pH. It was concluded that the FeOOH-GO composite adsorbent has great potential to remove both inorganic and organic phosphate simultaneously from contaminated water.

Keywords: organic phosphorus; removal; water; adsorbent; phosphorus; inorganic organic

Journal Title: Environmental Monitoring and Assessment
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.