LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

What are the effects of history length and age on mining software change impact?

Photo from wikipedia

The goal of Software Change Impact Analysis is to identify artifacts (typically source-code files or individual methods therein) potentially affected by a change. Recently, there has been increased interest in… Click to show full abstract

The goal of Software Change Impact Analysis is to identify artifacts (typically source-code files or individual methods therein) potentially affected by a change. Recently, there has been increased interest in mining software change impact based on evolutionary coupling. A particularly promising approach uses association rule mining to uncover potentially affected artifacts from patterns in the system’s change history. Two main considerations when using this approach are the history length, the number of transactions from the change history used to identify the impact of a change, and history age, the number of transactions that have occurred since patterns were last mined from the history. Although history length and age can significantly affect the quality of mining results, few guidelines exist on how to best select appropriate values for these two parameters. In this paper, we empirically investigate the effects of history length and age on the quality of change impact analysis using mined evolutionary coupling. Specifically, we report on a series of systematic experiments using three state-of-the-art mining algorithms that involve the change histories of two large industrial systems and 17 large open source systems. In these experiments, we vary the length and age of the history used to mine software change impact, and assess how this affects precision and applicability. Results from the study are used to derive practical guidelines for choosing history length and age when applying association rule mining to conduct software change impact analysis.

Keywords: age; change; change impact; history; software

Journal Title: Empirical Software Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.