LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis of a many-objective optimization approach for identifying microservices from legacy systems

Photo from wikipedia

The expensive maintenance of legacy systems leads companies to migrate such systems to modern architectures. Microservice architectural style has become a trend to modernize monolithic legacy systems. A microservice architecture… Click to show full abstract

The expensive maintenance of legacy systems leads companies to migrate such systems to modern architectures. Microservice architectural style has become a trend to modernize monolithic legacy systems. A microservice architecture consists of small, autonomous, and highly-independent services communicating by using lightweight network protocols. To support the designing of microservice architectures, recent studies have proposed either single or multi-objective approaches . In order to improve the effectiveness of existing approaches, we introduced toMicroservices that is a many-objective search-based approach to aid the identification of boundaries among services. In previous studies, we have focused on a qualitative evaluation of the applicability and adoption of the proposed approach from a practical point of view, thus the optimization process itself has not been investigated in depth. In this paper, we extend our previous work by performing a more in-depth analysis of our many-objective approach for microservice identification. We compare our approach against a baseline approach based on a random search using a set of performance indicators widely used in the literature of many-objective optimization. Our results are validated through a real-world case study. The study findings reveal that (i) the criteria optimized by our approach are interdependent and conflicting; and (ii) all candidate solutions lead to better performance indicators in comparison to random search. Overall, the proposed many-objective approach for microservice identification yields promising results, which shed light on insights for further improvements.

Keywords: optimization; many objective; legacy systems; approach; analysis many

Journal Title: Empirical Software Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.