LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A linear/non-linear hybrid time-series model to investigate the depletion of inland water bodies

Photo from wikipedia

Changing climate and human interference with natural phenomena are causing unprecedented changing patterns in hydro-climatic variables. These changes can manifest as dynamic changes of the stochastic properties of the datasets… Click to show full abstract

Changing climate and human interference with natural phenomena are causing unprecedented changing patterns in hydro-climatic variables. These changes can manifest as dynamic changes of the stochastic properties of the datasets over time, which pose challenges for conventional time-series modeling. These datasets are dynamic in nature, even when trend and seasonality components are eliminated. Shrinking lakes are among the most notable examples of hydro-climatic-driven phenomena. This study demonstrates a framework that can capture the underlying dynamic and non-stationary structure of such environments using a case study of Maharlou Lake, Iran. To that end, a hybrid time-series model was developed to account for volatility in the data [i.e., SARIMA (1,1,2) × (1,1,2)12/GARCH(1,0)]. A series of statistical tests (i.e., augmented Dickey–Fuller test, the Ljung-Box test, the heteroskedasticity test, and the two-sample Kolmogorov–Smirnov test) were used to create, calibrate, and assess the model in the 95% confidence interval. The results indicate the decline and depletion of the lake. This reduction manifests as a general downward trend and a widening gap between the lake’s intra-annual fluctuations. The changes could be an alarming signal, as this saline lake could be mimicking the tragic fate of similar inland water bodies like Lake Urmia or the Aral Sea.

Keywords: time series; series model; hybrid time; time; series

Journal Title: Environment, Development and Sustainability
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.