AbstractPutnam construed the aim of Carnap’s program of inductive logic as the specification of a “universal learning machine,” and presented a diagonal proof against the very possibility of such a… Click to show full abstract
AbstractPutnam construed the aim of Carnap’s program of inductive logic as the specification of a “universal learning machine,” and presented a diagonal proof against the very possibility of such a thing. Yet the ideas of Solomonoff and Levin lead to a mathematical foundation of precisely those aspects of Carnap’s program that Putnam took issue with, and in particular, resurrect the notion of a universal mechanical rule for induction. In this paper, I take up the question whether the Solomonoff–Levin proposal is successful in this respect. I expose the general strategy to evade Putnam’s argument, leading to a broader discussion of the outer limits of mechanized induction. I argue that this strategy ultimately still succumbs to diagonalization, reinforcing Putnam’s impossibility claim.
               
Click one of the above tabs to view related content.