Field data and simulation were used to investigate replication within trials and the allocation of replicates across trial sites using partial replication as an approach to improve the efficiency of… Click to show full abstract
Field data and simulation were used to investigate replication within trials and the allocation of replicates across trial sites using partial replication as an approach to improve the efficiency of early-stage selection in a potato breeding programme. Analysis of potato trial data using linear mixed models, based on four-plant (clonal) plots planted as augmented partially-replicated (p-rep) designs, obtained genetic and environmental components of variation for a number of yield and tuber components. Heritabilities, trial-to-trial genetic correlations and performance repeatability of clonal selections in p-rep trials and in subsequent fully replicated trial stages were high, and selection was effective for the economically important traits of marketable tuber yield and tuber cooking quality. Simulations using a parameter-based approach, pertaining to the variance components estimated from the p-rep field trials, and the parametric bootstrapping of historic empirical data showed improved rates of genetic gain with p-rep testing over one and two locations compared with testing in fully replicated trials. This potato breeding study suggests that the evaluation and selection of a clonal field crop in fully replicated trials may not be optimal in the early stages of a breeding cycle and that p-rep designs offer a more efficient and practical alternative.
               
Click one of the above tabs to view related content.