LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Composite Fibers From Cellulose Solutions with Additives of Bis (Trimethylsilyl) Acetylene and Alkoxysilanes: Rheology, Structure and Properties

Photo from archive.org

Solid–state dissolution in N–methylmorpholine N–oxide was used to obtain solutions of mixtures derived from cellulose and various organosilicon additives, namely, tetraethoxysilane, vinyltriethoxysilane, and bis (trimethylsilyl)acetylene. Optical study of the phase… Click to show full abstract

Solid–state dissolution in N–methylmorpholine N–oxide was used to obtain solutions of mixtures derived from cellulose and various organosilicon additives, namely, tetraethoxysilane, vinyltriethoxysilane, and bis (trimethylsilyl)acetylene. Optical study of the phase composition and morphology of these solutions showed that they are two–phase emulsions with a rather broad size distribution of particles of the dispersed phase. The nature of the flow of the mixed systems in continuous and dynamic deformation when the rheological behavior is monotypic depends to a certain extent on the nature of the organosilicon additive. Dry wet–jet spinning was used to obtain composite fibers. The structure and morphology of these fibers were studied as well as their mechanical and thermal properties. Analysis of the x–ray patterns diffractograms of the cellulose and composite fibers showed that the introduction of organosilicon additives into the cellulose matrix leads to less structural ordering of the cellulose. The mechanical characteristics of the composite fibers show some decrease in the strength and deformation characteristics with an increase in the elastic modulus in comparison with the cellulose fibers. Heat treatment of the cellulose and composite fibers up to 1000°C revealed a significant increase in the mass of carbon residue, whose amount depends on the type of additive.

Keywords: bis trimethylsilyl; rheology; fibers cellulose; composite fibers; structure; trimethylsilyl acetylene

Journal Title: Fibre Chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.