In fish, as in mammals, several studies have demonstrated that the cocaine- and amphetamine-regulated transcript (CART) plays an important role in feeding. However, thus far, the function of CART in… Click to show full abstract
In fish, as in mammals, several studies have demonstrated that the cocaine- and amphetamine-regulated transcript (CART) plays an important role in feeding. However, thus far, the function of CART in gibel carp (Carassius auratus gibelio) feeding regulation has not been reported. In our study, we first identified three forms of CART peptide precursors from gibel carp brain and named these CART-1, CART-2, and CART-3. The full-length cDNA sequences of CART-1, CART-2, and CART-3 were 616 bp, 705 bp, and 760 bp, respectively, encoding peptides of 118, 120, and 104 amino acid residues. We detected mRNA expression of CART-1, CART-2, and CART-3 in a wide range of peripheral and central tissues, with the highest expression detected in the brain. After a meal, mRNA expression of CART-1, CART-2, and CART-3 was significantly elevated, suggesting that CART-1, CART-2, and CART-3 may act as postprandial satiety signals. Moreover, mRNA expression of all three CART-1, CART-2, and CART-3 was significantly reduced during fasting and significantly elevated with refeeding. Our findings indicate that CART-1, CART-2, and CART-3 might function as a satiety factor in the gibel carp.
               
Click one of the above tabs to view related content.